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One-dimensional nonlinear and nonlocal
oscillations of plasma

Paulius Miskinis
Vilnius Gediminas Technical University, Faculty of Fundamental Sciences, Department of Physics,

Sauletekio Ave. 11, LT-2040, Vilnius, Lithuania

A simple one-dimensional model describing nonlinear and nonlocal oscillations of electron
plasma is considered. Due regard to the nonlocality of field potential allows to smooth down the
peaks of nonlinear waves, to steep up the wave front, to modify the velocity amplitude and phase
of the travelling wave.

1. Introduction _p + a(pv) = 0,
dt OJx=0

In many of the models of election magnetic at a

hydrodynamics, a more complex spatial distribution T+ v avaDx q (3)
of currents and fields is usually reduced by shifting to "t + x
the corresponding two- or even one-dimensional a2(P =47r(p-1),
systems, utilizing the symmetry of a model under dX-

study. Nevertheless, the magnetic field is essentially where p is the density of plasma, v is the velocity, and
three-dimensional, and such simplifications can
evoke manifestations of the effective nonlocality of a gp is the potential. The system of units e = m = Po =
two- or one-dimensional medium. A good example of has been chosen. aD.(P is a fractional derivative [6, 7]:
such nonlocality can be electron flows in a flat
plasma layer [1], the Hall effect in thin films [2], in Da 1 d X t(t)dt
which the nonlocality of the medium is manifested in DXf(x)= -(4)
an integral relation between the current density a (X 4f
J and the z-component of the magnetic field Bz and the order of the derivative a - 1. Note here that at

a =1 we have a classic system of evolution equations
expressed by the Ampere law: described in [8, 9].

2 J(x) We will take into consideration only the travelling waveB = v.p. _ f ý-d (1) type solutions that depend only on the variable

o o= x - ut, where u = const is the wave velocity. ThisThe nonlocality of vortex filaments in solitary thin assumption essentially simplifies the evolution equation
film [3, 4] and layered superconductors [5], where assump to essti m
nonlocality is manifested in the expression for the (1) and leads to the system
two-dimensional current function yt related to the p(v- u) = 0,
non-divergent current density j (ez is the unit vec-
tor of the axis z) (2I{1 v2 _ uvla 1a= 0, (5)

j= --Vx (yre,). (2) (

4zr 2
In the present work, on an example of a simple one- -'P = 4ir(p-1),
dimensional model, the problem of nonlinear and -1
nonlocal oscillations of electron plasma is where al=-aDx-(p is the fractional integral of the
investigated. Due regard to the nonlocality of the
field potential allows to smooth down the peaks of order a [6].

nonlinear waves, to steep up the wave front, to From the first equation in (5) follows the relation
modify the velocity amplitude and to change the p(v -u)= A, (6)
velocity phase of the travelling wave. where A= const. It plays the role of the boundary

condition. Also, from the other two equations of the

2. The nonlocal oscillations system (5) it follows that
v =u - •2alaq (7)

The simplest model of electron plasma oscillation,

which takes into account the influence of the and the Hamiltonian of the system
1 2 _ -potential nonlocality, is described by the model H= v -UV-a lqP = const (8)

system of equations 2
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Let us introduce the new variables periods of oscillations. The explicit dependence v(t) for
12 3--a I-a a fixed value of the space variable x is shown in Fig.2.
4 = 4 VP • (9) For a = 1, we have only local oscillations:

Then the Hamiltonian H is ± 6 2

H y 2x=-iu.(10) e
2 2

The phase trajectories in the phase plane (x, y) (see 3. Conclusions
Fig.l) are closed curves surrounding the centre-focus
(0, u2/4): The main peculiarities of the nonlocal plasma velocity
y3-a = 44x- 4x+ 2E (11) oscillations are:

and crossing the axis x in the points * steepening up of the wave front

1 2 * changes of the velocity amplitude
x (u±s) s 2E (12) a-1

4 v ~u-too 2

771 7 the smoothened peak of the nonlinear wave top

0 the global phase shift AV - (a - l)r / 2 of velocity
oscillations

0.75

a) b) 0 J t

Fig. 1. Phase diagram of a system with the Hamiltonian -0.s

H =y 3-- / 2-2u~x+2x : a) for a = I (local case) and b) -0.75

a = 0.6 (nonlocal case); u = 2 and E = -3.995; -3; -2; -1. 1 1.s 2 2. 3 3.5

The bound states E < 0 are separated from the un- Fig. 2. Velocity of oscillations v(t) in dependence on time at
Thbound onestaythes condition aE = head s f o the u the frequency wo -1, parameter e = 0.9, if nonlocality a = 0.05bound ones by the condition E = 0, which leads to the anphssif =079(peln)rsectclol

2and phase shift Ap =0.079 (upper line) respect the local
region xE[0; u ]. case (lower line). For simplicity, the next symmetric half-

It is possible to show that the period of plasma period of the periodic wave is omitted.
oscillation for a = I

T dv 2r Note that all these peculiarities are of qualitative
T=,"-= ,--- (13) character. For quantitative assessments, a model of real

and does not depend on the oscillation energy E. At plasma is advisable.

the same time the oscillations are unharmonic.
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